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Reactions of Cu(l) complexes with dioxygen are known to
generate a structurally diverse array of oxidants in industrial and
biological processes. Much effort has been directed toward the
spectroscopic and structural characterization of the reactive
species:? The combination of low-temperature and bulky ligands
has proven to be useful for successfully stabilizing and character-
izing Cu/Q; intermediate$:” However, the reactivities of these
intermediates are usually limited to intramolecular ligand
oxidatiorf~2 or intermolecular oxidation of readily oxidized
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substrates. In the latter case, the observed reactivity is plausiblyupon warming ¢ —40 °C) by oxidizing an alkyl substituent of

explained by an atom-transfer mechanism involving the dioxygen

the ligand through a mechanism of NE€H hydrogen atom

derived ligands without precoordination of the substrate to the gpstraction (HA¥:'" Consistent with this mechanisml_ffuco)-
metal center. A bz_allanced ligand design that p_reqludes deleteriousCu(|||)2(O)2]z+ (1) (TMCHD = N,N,N,N-tetramethyl-{R,2R-
bimolecular reactions, yet allows substrate binding to the copper cyclohexanediamine) proved to be the most thermally robust

centers, is an attractive and intuitive means of converting these
well-characterized Cu/QOntermediates into synthetically useful
oxidants!® Notable advances in the catalytic use of dioxygen as
a terminal oxidant in alcohol oxidations with copper complexes
has been the subject of several recent regéris.

Recent work in [Cu(ll.] dioxygen chemistry has shown the
prevalent formation of a bjg-oxo-dicopper(lll) core, Il ,Cu(lll) -
(O),)?, at low temperatures and with weakly coordinating anions,
whereL is one of a wide variety of peralkylated-diamine or
-triamine ligand<:'"'8 These high-valent metabxo species
preferentially act as mild 2Zeoxidants and generally decompose
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complex among the series of ligands examined in our previous
report®’ Its limited reactivity with exogenous substrates prompted
a more systematic study of the reactivity of other related
complexes? N,N,N,N'-tetramethyl-{,3)-propanediaminel(rvrp)
generates a thermally sensitive CuillGypep Species2,?° spec-
troscopically similar tdl.}” However unlikel, it readily oxidizes
a variety of alcohols and benzylamines in respectable yields. A
distinct structural difference betwedrand2, namely the ability
to accommodate a fifth exogenous ligand 2n most readily
explains this difference in reactivity.

Equimolar quantities of [Cu(l)(PhCBJ{Y) (Y = CRSG;™ or
ClO,™) andL rvpp react rapidly in CHCI, with dioxygen at—80
°C to generate [(tmpp)2Cu(lll)2(0).]%" (2).2* The reactivity of2
with readily oxidized substrates is largely similar to that of other
[LoCu(ll)2(O),)?" cores, as it rapidly and quantitatively 95%)
oxidizes 2,4-ditert-butyl phenol, 3,5-diert-butyl catechol, and
thiocresol at—80 °C (Scheme 1j? Substrates with weak
C—Hbonds (e.g., 1,4-cyclohexadiene and 9,10-dihydroanthra€ene),
are not appreciably oxidized at40 °C.24
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— Table 1. Reaction of2(ClOy), with alcohol$
4. alcohols — carbonyls yiel@
| /\ A /\ }\ f cinnamyl alcohol — cinnamaldehyde 90% (%)
\/ \JV benzyl alcohol — benzaldehyde 90% (5)
L og \/ v V o-methyl benzyl alcohol — acetophenone 60% (4)
’ -4 cyclohexanol — cyclohexanone 70% (4)
. 1-octanol — 1-octaldehyde 60% (4)
40 8.0 12.0
k(A a Reaction conditions: 10 mM &f(ClO,), with 2 equiv substrate at

—40 °C in CH,Cl,. ® Number of experiments.

an axially ligated oxygen atom of a triflate anion. This expanded
ligation is also consistent with a slight increase in the-Gly,e
(2.01 A) and the CuCu distances (2.85 A) relative to other
[(Ldiaminézcu(l||)2(O)2]2Jr CompleXeS (e.g., [.(MECHD)ZCU(III)Q-
(0))?" (3) MECHD = N,N-dimethyl N,N-diethyl-(1R,2R-
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0 ! 2 3 cyclohexanediamine, GtCu = 2.74 A, Cu-Nae = 1.94 A).
R'(A) Similar expansions of the GtCu and Cu-N distances are
Figure 1. Fourier transform and (inset) EXAFS data and fit B§CFs- observed in the 5-coordinate [{RACN),Cu(lll)2(02)]?" (R =
SOy),. Data are presented as solid lines, fits as dashed lines. Me, Bn) specieg®?®

. . Complex2 acts as a mild 2eoxidant which stoichiometrically

As X-ray quality crystals o2 have been elusive, Cu K edge  conyerts alcohols (benzylic, allylic, and primary) to the corre-
X-ray absorption spectroscopy (XAS) has been used to charactersponding aldehydes under mild conditiorst0 °C). Respectable
ize the copper coordination. The spectrum@xhibits a preedge  yje|ds are obtained in each case without measurable overoxidation
feature at~8980.5 eV, associated with the Cu(lll) oxidation state (Table 1)%31 Preliminary mechanistic data are most consistent
in similar cores™ In contrast to otherl[,Cu(ll)o0,]** complexes \ith alcohol coordination, deprotonation, and finally oxidation.
with simple peralkylated-diamine ligandsthe EXAFS data of Nearly equivalent intramolecular primary kinetic isotope effects
2 are best fit with penta- rather than tetra-coordinate copper CentersK|E) using PhACHDOH or PhCHDOas substrates [KIE= 4.8
(Figure 1)2°The copper ligation consists of two oxygen scatterers 4 233 Kp2 suggest that the product-determining steps of alkoxide
at characteristically short distances (@a. = 1.81 A), two and alcohol oxidation involve €H bond cleavage. However, the
nitrogen scatterers (CtNae= 2.01 A_), and an additional oxygen  gramatically different reaction rates between PROH and
scatterer at 2.32 A7 The fifth ligand is metrically consistent with PhCHO- indicate that the rate-determining steps (RDS) are

(24) Reaction of 10 mM 0R(CIO,); with 20 equiv of cyclohexadiene or  different3? For alcohols, deprotonation and-€1 bond cleavage
dihydroanthracene at40 °C for 20 h shows negligible substrate oxidation — are not associated with the RDS singgcr20dKphcpzon= 1.1(1)

(<1%). . . . at 253 K andkpnch2odKehcH2op = 10(2) at 233 K. Further, the
E. ffﬂ&“ﬁé’f’éﬁ; Ls'ia'\gE,I( ?‘.”c’feﬁfﬁgdog"é%ﬁ%,Ak.“ﬁ'j‘AMn?_yéﬁeJmMgosgﬁ,'S?O”* above results suggest that once the alcohol is bound, its dissocia-
119, 8578-8579. tion is slow, relative to the €H activation step. Further

(26) EXAFS data were collected at 10 K on two independently prepared g|ycidation of the mechanism is underway.

solution (acetone) samples and one solid sampl&(GfSG;),. Data were . . ot .
nearly identical within experimental uncertainty for all three samples. Fits to The metrical and electronic features of the §(J),]*" core in

the data produced very similar structural models (See Supporting Information). 2 are similar to previously characterized bis-oxide-Cu(lll) cores,
(27) Backscattering_atoms which differ i@ by 1 are typically not yet the reactivity of differs significantly. The subtle change in

distinguished by EXAFS (e.g., O and N) (Scott, R. Methods Enzymol. - : :
1985 117, 414). For the purposes of calculating phase and amplitude chelate-ring size from a 5-membered chelateLifcip to a

parameters, the copper ligation was modeled by two equivalent O, two 6-membered chelate Inrvep provides sufficient flexibility in2
equivalent N, and a longer axial O. Separate phase and amplitude parameterso allow the proposed exogenous ligand coordination. This

were calculated independently for each of these three ligand types. This is 4; : il ; :
the basis for the distinction made between O and N backscatterers in thedlﬁerem'rjll accessibility logically relates to the modulation of

EXAFS fit to the data. reactivity, reminiscent of hemocyanin (Hc) and tyrosinase (Tyr);
(28) Solid [(M&TACN)2C;02)(CF5S0s)y: Cu—Cu = 2.77 A; Cu-0 = the dioxygen intermediates of Hc and Tyr are electronically nearly
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